Archive for the Category cellular automata

 
 

“Triangular Life”

Recently I looked through a bunch of triangular cellular automata in which each (1) uses two states, (2) uses the simple alive cell count type of rule, and (3) uses the neighborhood around a cell c that is all the triangles that share a vertex with c; that is, the 12 shaded triangles below are the neighborhood around the yellow triangle:
12-cell triangular neighborhood
These cellular automata have state tables that can be thought of as 13 rows of 2 columns: there are 12 possible non-zero alive cell counts plus thee zero count and each of these counts can map to either alive or dead in the next generation depending on whether the cell in the current generation is alive or dead (column 1 or column 2). I looked at each of the 4096 cellular automata you get by filling the third through eighth rows of these state tables with each possible allocations of 0s and 1s and letting all other rows contain zeros.

A handful of these 4096 feature the spontaneous generation of gliders but one rule is clearly the triangular analog of Conway’s Life. I have no idea if this rule has been described before in the literature but it is the following:

On a triangular grid

  • If a cell is dead and it has exactly four or six vertex-adjacent alive neighbors then it alive in the next generation.
  • If a cell is alive and it has four to six vertex-adjacent alive neighbors, inclusive, then it remains alive in the next generation.
  • Otherwise it is dead in the next generation.

The above has a glider shown below that is often randomly generated and exhibits bounded growth.
Here it running in Jack Kutilek’s web-based CA player:

Tri Life gliders are slightly rarer than in Conway life because they are bigger in terms of number of alive cells in each glider “frame”. If you don’t see a glider in the above, stir it up by dragging in the window.

frames of the glider in cannonical triangular life

Is there hexagonal analog of Conway’s Game of Life?

The short answer is that in the hexagonal case the best analog of Conway’s Game of Life — in my opinion as someone who has been a CA hobbyist for 30 years or so — is an original creation which I will describe for the first time in detail in this blog post. (Note: The links to cellular automata in this post go to a custom web-based player which may not run correctly on mobile devices.)

Regarding a hexagonal Game of Life, a key thing to understand is that Conway Life isn’t just the rule; it is the rule (Life 2333) running on a square grid with an 8-cell neighborhood i.e. the neighborhood of four squares directly adjacent to a square plus those diagonally adjacent. You can, of course, apply the same rule on a hexagonal grid using the natural six hexagon neighborhood but what you will get won’t look anything like Life. It will look like this: Life 2333 on a hexagon grid.

So if the above does not qualify as a hexagonal Game of Life then what would? Well, at the very least we need a glider. Carter Bays, a professor at the University of South Carolina, presented a Conway-like rule that admits a glider on the hexagonal lattice in 2005, Life 3,5/2 in his notation. However, by Bays’ own admission “this rule is not as rich as Conway’s Life” and indeed when we run Bays’ Hex Life on random input we do not see gliders: Life 3,5/2 on random input. The problem is that its glider is too big to occur randomly. Its glider is in a sense artificial. Part of the beauty of Conway Life is that gliders are frequently spontaneously generated. The other thing you’ll notice about Bays’ Life 3,5/2 is that it descends into still-lifes and oscillators too quickly. Conway Life is dynamic. It sprawls and grows, descends into bounded chaos, before finally decaying into still-lifes and oscillators.

To summarize, we want a hexagonal cellular automaton that

  1. Has a glider that is frequently generated by random initial input.
  2. Frequently exhibits bounded growth from random initial input.

It is my contention that there is no simple totalistic rule over two states and the hexagonal grid using the natural 6-cell neighborhood that exhibits both 1. and 2.

In order to achieve what we want, we need to drop one of the constraints. Using my cellular automata breeding application Lifelike, I explored dropping the constraint that the rule must be a simple totalistic rule over two states. What I have come up with is a cellular automaton that uses a simple totalistic rule over three states,  states 0 to 2. One way to view this move is to view the live cells in Conway Life as counters — beans, pennies, whatever — and imagine dropping the constraint that a cell can only contain one counter. Anyway, my rule is as follows:

  • Take the sum S of the 6-cell neighborhood where death=0, yellow=1, and red=2.
    • If the cell is currently dead it comes to life as yellow if S is exactly 4.
    • If the cell is yellow it goes to red if S is 1 to 4 inclusive or is exactly 6.
    • If the cell is red it stays red if S is 1 or 2 and goes to yellow if S is 4.
    • Otherwise it is dead in the next generation.

The above, which I call “Joe Life”, is as rich as Conway life: click this link to see it run. It exhibits bounded growth with about the same burn rate as Conway Life and features two gliders, the little fish and the big fish, which are frequently generated spontaneously.

The little fish

The big fish

I concede Conway’s rule is more elegant than Joe Life’s rule but if one thinks about it, Conway Life’s neighborhood is less natural than the six hexagon neighborhood in that it is kind of weird to include the the diagonally adjacent squares. So in my opinion, elegance that Joe Life lacks in its state table it makes up for in its neighborhood.

Some cellular automata

A friend of mine, Jack Kutilek, wrote a web-based player for the CA rules format that I used in Lifelike — basically simple JSON files that describe a state table and the meta-information you need to execute the CA the state table encodes. It uses WebGL and a fragment shader and as such is very fast.

I made a little web page interface here, some cellular automata, which just embeds Jack’s fragment shader thing via an iframe. The naked player is here, running Joe Life by default. You can run it on different rules by providing it  URI-encoded Lifelike JSON as an HTTP query string.

Lifelike, or the Joy of Killing Time via Breeding Little Squiggles

A couple of weeks ago I got interested in this project but wanted full control of the code, wanted to know exactly what it is doing, wanted a bunch of features like the ability to import and export CA rules, and wanted to have the process not be seeded by cellular automata already featuring gliders (which the web app seems to be). To this end I have pushed a project to github that does something similar but, I hope, more transparently.

I’m calling it Lifelike Cellular Automata Breeder. It is a (C# WinForms) application in which given some settings a user can artificially select and breed cellular automata; i.e., it performs a genetic algorithm in which the user manually provides the fitness criteria interactively.

I decided I wanted to only allow a reproduction step in which I scramble together state tables in various ways, guessing that using “DNA” more complex than commensurate 2D tables of numbers wouldn’t work well for a genetic process in this case. I characterize CA rules as applying only relative to a given number of states and a given, what I call, “cell structure” and “neighborhood function”. Cell structure just means a lattice type and neighborhood –e.g. square, with four neighbors; square, with eight neighbors; hex, with six, etc. “Neighborhood function” is an arbitrary function that given the  states of the n cells in some cell’s neighborhood returns an integer from 0 to r where r is dependent on the neighborhood function and possibly number of states. For example, Conway Life uses the neighborhood function I refer to as “alive cell count”, and for an n-cell neighborhood, r equals n because the greatest number of alive cells that can surround a cell is just the size of the neighborhood. If the user has selected s total states, the state tables will be s by r.

Lifelike works as follows

  1. The user selects a number of states, cellular structure, and neighborhood function and kicks off the genetic process.
  2. Lifelike sets the current generation to nil, where by “generation” we just mean a set of cellular automata that have been tagged with fitness values.
  3. While the user has not clicked the “go to the next generation” button,
    • If the current generation is nil, Lifelike randomly generates a cellular automata, CA, from scratch by making an s by r state table filled with random numbers from 0 to s. (The random states are generated via a discrete distribution controllable by the user). If the generation is not nil, Lifelike selects a reproduction method requiring k parents, selects k parents from the current generation such that this selection is weighted on the fitness of the automata, generates CA using the reproduction method and parents, and then possibly selects a random mutation function and mutates CA, selecting the mutation function via a discrete distribution controllable by the user and applying it with a “temperature” controlled by the user.
    • Lifelike presents CA in a window.
    • The user either skips CA in which case it no longer plays a role in the algorithm or applies a fitness value to it and adds it to the next generation.
  4. When the user decides to go to next generation, the selections the user just made become the new parent generation and processing continues.

Here’s a video of me playing with an early version of the application.


Results, Musings, etc.

Briefly, Lifelike works.

You can produce interesting cellular automata with it and there is a weird feeling that is hard to describe when you first see a tiny glider wiggle across the screen; however, the way it works is somehow more mundane than I thought that it would be. I wonder if all genetic algorithms are like this. Most of what it produces is garbage. When you see something that isn’t garbage you can select for it. However Lifelike doesn’t do magic. It doesn’t magically find phenomena you want just because you have a fancy framework implemented to find such phenomena. For example, it is my belief at this point that there is no simple hex grid analog of Conway Life using alive cell count, a six cell neighborhood, and 2-states. I think you could probably prove the non-existence of gliders in this configuration but it would be a boring proof by exhaustion and running Lifelike on that configuration is boring as well. Just because you, the user, are a step in a “genetic algorithm” doesn’t somehow make it interesting.

The simple hex neighborhood negative result led me to ask the following question: What is the smallest change you can make to hex/6-cell/alive cell count/2 states to allow Conway Life-like behavior? If you google “Hex Life” you will find that it is well-known that interesting things can happen if you go to a 12-cell  Star of David shaped neighborhood, but this seems inelegant to me because the simple hex neighborhood is so nice. The question then is are gliders possible in the simple hex lattice and neighborhood if we add one state and modify “alive cell count” in a trivial way? The answer to this question turns out be yes. There are beautiful rules that live in the hex lattice with the natural neighborhood if we have 0 = death, 1 = Alive-A, 2 = Alive-B and instead of the simple alive cell count we use its natural analog when states can have values greater than one: sum of states.

Below is a such a rule set and is probably the best thing that has come out of my work with Lifelike as far as I am concerned (So I am naming it Joe Life, assuming that it is unknown in the literature).

The above has a nice quality that Conway Life also has that I call “burn”. This a qualitative thing that is really hard to define but it is what I look for now when I play with Lifelike: burn + gliders = a Life-like cellular automaton. “Burn” is the propensity of a cellular automata configuration to descend into segregated regions of chaos that churn for awhile before ultimately decaying into gliders, oscillators, and still lifes. Some CAs burn faster than others; the above has a nice slow burn. CAs that exhibit steady controlled burn turn out to be rare. Most CAs either die or devolve instantly into various flavors of unbounded chaos.

However there does turn out to be another quality that is not death or unbounded chaos that is sort of like the opposite of burn. See for example

(The above is hex 6-cell, four states, and using a neighborhood function I call “state-based binary”)  which I have been calling “Armada” and generally have been referring to these kind of CAs as being armada-like. Armada-like cellular automata quickly decay completely into only weakly interacting gliders. For example, one from the literature that I would characterize as armada-like is Brian’s Brain. Armada-like rules turn out to be more common than life-like rules. They’re impressive when you first start finding them but they are ultimately less interesting, to me at least. The best thing about armada-like rules is that they indicate that life-like rules are probably “nearby” in the space you are exploring in the genetic process.

Also they can breed weird hybrids that defy classification, such as the following which are all burn with large blob-like gliders and seem sometimes to live around the boundary between armada-like rules and life-like rules.

Magic Carpets (square, 4-cell/ 4 states / sum of states)

or Ink Blots (hex, 6-cell/ 3 states / “0-low-med-high”)

My other major result is that life-like rules exist in the square 4-cell neighborhood if we allow an extra state and use the simple sum of states as the neighborhood function, but they can be boring looking so instead here is an armada-like square 4-cell CA that is on the edge of being lifelike:

The above uses the neighborhood function I call “2-state count” which enumerates all possible combinations of c1, number of neighboring cells in state 1 and c2, number of neighboring cells in state 2 or above, in an n-cell neighborhood i.e. c1 + c2 ≤ n.