Archive for the Category gamedev

 
 

I put pypacker up on github

Probably the most read post on this blog is about sprite packing in Python, here.

At the time I didn’t have a github account and was planning to make a small desktop application out of the algorithm as a way of learning Qt, which maybe I really will do some day, but in the meantime here is the latest version of this code and that I mention in the comments of the original post:

https://github.com/jwezorek/pypacker

The main thing that this version adds besides fixing the bug with growing that I had mentioned is an “–padding” command line option that will pad each sprite by an integer amount (usually you want 1) in the sprite sheet. This turns out to often be necessary for cocos2d-x/iOS games as if you don’t do it one sprite can bleed into adjacent sprites — although the issue may have been something that Apple has now fixed at the OpenGL ES layer or that was fixed in cocos2d-x — I was never sure whose bug it was but padding by a pixel makes it go away.

So usage would now be like:

pypacker.py -i C:\foo\sprites -o C:\foo\output\spritesheet -m grow -p 1

which would do packing on the images in C:\foo\sprites and make two files in C:\foo\output, spritesheet.png and spritesheet.plist, with each sprite padded by 1 pixel. If you need power-of-two square padding on the out put include a “-x” option on the command.

Draak Update

Below is gameplay video of a prototype of the puzzle game “Draak” that I am working on. Draak will be an iPad-only iOS game; the prototype below is written to Windows in C# on top of MonoGame.

The initial idea for this game was about the art. I thought it would be cool to make a game that looks like an animated version of one of M. C. Escher’s tessellations, particularly one that involves a similarity symmetry. So I lifted mechanics from a 1990s era game that I always felt was a good game trapped in the typical square lattice for which it was particularly ill-suited. The old game’s Euclidean lay-out wasted a lot of space.

A lot of the work in the above may not be immediately apparent (which is good I think). Specifically, there are actually two shapes of butterflies in the above not just one. They look like this:
draak butterfly tiles
and are arrayed as in a checkerboard with a 90 degree rotation applied to cells of opposite parity — the geometry might be clearer here in which I create these butterfly tiles unadorned with my tool EscherDraw (before I had beziers working in EscherDraw) Thus any time a butterfly moves to a cell with opposite parity I need to not only handle the scale and rotation tweening imposed by the spiral lattice, I also have to simulatenously do the 90 degree rotation imposed by the butterfly tiles and simultaneously morph the actual sprites above from one to the other.

I created the above sprites as vector art using tile outlines exported from Escher draw as SVG and wrote a Python script that morphs SVG as the publically available software for morphing vector graphics is surprisingly non-existent. I am going to post about my vector morphing code here soon, I just need to clean it up for use by people other than me.

Untitled Escher Game Update

I’ve decided my “untitled Escher game“, i.e. Zoop on a double logarithmic spiral, is going to be named “Draak”, which is the Dutch word for dragon. The title bears no relation to the game beyond the fact that I am going to use as its logo art based on the following novel tesselation of the plane that I discovered while fooling around with the tesselation tool that I implemented to construct the sprites for this game, and also that I thought it would be cool to make the title art be an ambigram with rotational symmetry and I think I could figure out a way to do this with the word “draak”.

Notes on a novel tiling of the plane

Rendered in Escher draw

What I am working on…

I’m working on a puzzle game for iPads that takes the mechanics of a somewhat obscure game from the 1990s(*) and puts them on a double logarithmic spiral.

The final app will be styled similar to one of M. C. Escher’s tessellations of the plane with the tessellation changing at level breaks. I don’t have a name yet…

Gameplay will be like the following, which is video of a prototype I wrote in C# (just WinForms to the GDI, nothing fancy). I’m going to write the real thing in Swift using Sprite Kit, unless Swift turns out to be too immature in which case I’ll use C++ and Cocos2d-x again.

*: The identity of which I leave as an exercise for the reader.