A Woven Icosahedron

You can weave an icosahedron from 10 strips of paper — or anyway you can weave a construction that has icosahedral geometry; it is actually more of a snub icosahedron.

From about 11″ strips of printer paper folded lengthwise to have two layers with a little overlap to lock into rings, as pictured below, locks well and is rigid:

Construction follows the pattern implied by the following:

A higher order sonobe ball

Below is a modular origami construction known as the 120-unit sonobe ball. It has the geometry of an icosidodecahedron but with the 12 pentagonal faces of the icosidodecahedron split into five of the little equilateral pyramids that sonobe units demand.

 

The above was made from 120 Post-it notes, three sets of forty in each color. I haven’t seen anyone post a picture of one of these 3-colored like this, i.e. in three colors such that no two units of the same color are adjacent to each other, so I thought it was of some interest…

A schematic of the coloring I found is below. I have no idea if it is unique:

Review of Neal Stephenson’s Seveneves

I’m the kind of reader of Neal Stephenson who likes Snow Crash, Diamond Age, and Anathem but has never succeeded in plodding through Cryptonomicon (I tried twice!) and who has never even tried to read the Baroque Cycle, not being a masochist. I’m a reluctant fan. I wish he would  realize that just because the research he has been doing on the historical use of mercury in silver mining (say) is interesting to him, it isn’t necessarily interesting to everyone else.

His books can often be characterized this way, by the odd topics he shoehorns into them: Snow Crash contained a lot about the Sumerian language and various bits of esoterica from computer programming, Cryptonomicon had Enigma machines and the Theory of Computation, Anathem was ultimately about the Many Worlds interpretation of quantum mechanics mixed with Roger Penrose’s anti-computational theory of mind. The success of these books depends on whether or not the bits of trivia he is throwing at you begin to stick, whether they add up to anything — Does their interest become clear and does their inclusion attain a kind of inevitability?

Seveneves is concerned with orbital mechanics, the usefulness of swarming behavior in robotics, and the physics of tethers and chains — the latter of which Stephenson is determined to convince us is not only fascinating but shockingly under-studied. Somewhat surprisingly, this time around, it all comes together. The book works because ultimately it is about the nature of technology. The fun science facts are just the lens through which he examines that nature. The book is about the extent to which the human race needs technology to survive despite the fact that the technology itself is mostly mundane: ultimately the difference between a space tether and a loop of string is a few millenia plus the fact that former is a lot bigger.

The book is two stories in one. The first part is a defiantly retro “space cowboy” yarn, a disaster story in which a cast of characters has two years to set up a sustainable community in near earth orbit because the earth is about to become uninhabitable for five thousand years. It is a throwback to days when NASA was culturally relevant and space-walks and rocket launches were cool. In the Acknowledgements Stephenson mentions a staff member at Planetary Resources, an actual asteroid mining company he visited for research purposes, being pleasantly surprised that “someone was producing science fiction where the asteroid mining company was, for once, the good guys” and this pretty much sums up this portion of the book. It reminds me of hard science fiction from the 1970s, something like Arthur C. Clarke’s Rendezvous with Rama but with Neal Stephenson’s typical geek-chic type characters.

The second part deals with the descendants of the first part and the first part casts a shadow on this story in interesting ways. There is a kind of inevitability to it. For example, at one point it is important for a particular character to know Morse code and given the preceding six hundred pages it is endearingly believable that he would. It makes perfect sense that a Morse code knowing tradition would have survived because of plot details in the space cowboy portion of the book and it leads one to think about technology as cultural transmission, as useful memes. Much of Seveneves is like this. It is a book in which over the course of a eight hundred pages a melodrama set on the International Space Station leads naturally to a genetically engineered neanderthal wielding a whip made out of tiny robots, which is what science fiction is all about.

Draak Update

Below is gameplay video of a prototype of the puzzle game “Draak” that I am working on. Draak will be an iPad-only iOS game; the prototype below is written to Windows in C# on top of MonoGame.

The initial idea for this game was about the art. I thought it would be cool to make a game that looks like an animated version of one of M. C. Escher’s tessellations, particularly one that involves a similarity symmetry. So I lifted mechanics from a 1990s era game that I always felt was a good game trapped in the typical square lattice for which it was particularly ill-suited. The old game’s Euclidean lay-out wasted a lot of space.

A lot of the work in the above may not be immediately apparent (which is good I think). Specifically, there are actually two shapes of butterflies in the above not just one. They look like this:
draak butterfly tiles
and are arrayed as in a checkerboard with a 90 degree rotation applied to cells of opposite parity — the geometry might be clearer here in which I create these butterfly tiles unadorned with my tool EscherDraw (before I had beziers working in EscherDraw) Thus any time a butterfly moves to a cell with opposite parity I need to not only handle the scale and rotation tweening imposed by the spiral lattice, I also have to simulatenously do the 90 degree rotation imposed by the butterfly tiles and simultaneously morph the actual sprites above from one to the other.

I created the above sprites as vector art using tile outlines exported from Escher draw as SVG and wrote a Python script that morphs SVG as the publically available software for morphing vector graphics is surprisingly non-existent. I am going to post about my vector morphing code here soon, I just need to clean it up for use by people other than me.

Beziers in EscherDraw Video

Creating the draak logo in EscherDraw with bezier curves:

My Code for Doing Two Things That Sooner or Later You Will Want to do with Bezier Curves

I just added full cubic bezier curve support to the vector tessellation creation tool I am developing (see here). I’ll include some video at a later date (Update: here) showing this feature in action but first I want to document and make publicly available some of the code involved: namely, a bezier class in C# that supports two functions that are not the easiest things in the world to implement. Both of these functions come up as soon as you try to do anything non-trivial with beziers and the literature online can be unhelpful.

My code is here: link.

The first function is splitting a cubic bezier into two curves at a given t parameter such that the concatenation of the two curves is congruent to the original. This turns out to be easy; however, I could find no actual code on offer, rather just descriptions of code. There is good coverage elsewhere on the theory so I won’t go into it deeply here, but, briefly, splitting a bezier is easy because how one does so follows naturally from the sort of recursive definition of the bezier that is implied by De Casteljau’s algorithm. Anyway here is my code:

...
 public Tuple<Bezier,Bezier> Split(double t) {
     PointD E = Interpolate(t, CtrlPoint1, CtrlPoint2);
     PointD F = Interpolate(t, CtrlPoint2, CtrlPoint3);
     PointD G = Interpolate(t, CtrlPoint3, CtrlPoint4);
     PointD H = Interpolate(t, E, F);
     PointD J = Interpolate(t, F, G);
     PointD K = Interpolate(t, H, J);

     return new Tuple<Bezier, Bezier>(
         new Bezier(CtrlPoint1, E, H, K),
         new Bezier(K, J, G, CtrlPoint4)
     );
 }

 static private PointD Interpolate(double t, PointD pt1, PointD pt2) {
     double x = (1.0 - t) * pt1.X + t * pt2.X;
     double y = (1.0 - t) * pt1.Y + t * pt2.Y;
     return new PointD(x, y);
 }
....

The other function is considerably harder: finding the nearest point on a bezier curve to a given point. If you scan the literature (i.e. perform the google search) you will find that what most people end up using is some code from an article in the book Graphics Gems I, “Solving the Nearest-Point-On-Curve Problem” by Philip J. Schneider. I, however, have a couple of problems with this code (1) I don’t really understand it, (2) it is long and I need to port it to C#, and (3) someone on the internet is claiming that it is incorrect but given (1) I can’t really evaluate the claim; see the comment that begins “There seem to be errors in the ControlPolygonFlatEnough function […]” in the C code here.

But more relevantly I just don’t get this code on a fundamental level. The nearest point on a bezier problem is difficult to solve mathematically but it is easy to formulate mathematically. I think that the Graphics Gems code obscures the straightforward aspect of how this problem can be formulated. Further, I don’t have a problem using code that I don’t understand; however, if I am going to port an opaque block of code from one language to another I’d like to keep that portion of code to a minimum and I can do this easily by structuring my code around the formulation of the problem that I understand.

The formulation I am talking about is as follows, if B(t) is a particular cubic bezier function, B’(t) is its derivative, and P is an arbitrary point then [B(t) – P] ⋅ B’(t) = 0 when t is the parameter of the closest point on B to P. [B(t) – P] is a vector that points from P towards some point on the curve and B’(t) is a vector that is tangent to the curve at this point, if the distance is going to be a minimum then these two vectors will be perpendicular and thus their dot product will be zero. Since B(t) is cubic, its derivative will be quadratic and thus when we take the scalar product of [B(t) – P] and B’(t) we will end up with a quintic equation of one variable. This leads naturally to a nearest point function that looks like the following on the top level:

 public Tuple<PointD, double> FindNearestPoint(PointD pt)
 {
     var polyQuintic = GetNearestBezierPtQuintic(
         _points[0].X, _points[0].Y,
         _points[1].X, _points[1].Y,
         _points[2].X, _points[2].Y,
         _points[3].X, _points[3].Y,
         pt.X, pt.Y
     );
     List<Complex> roots = FindAllRoots(polyQuintic);

     // Filter out roots with nonzero imaginary parts and roots
     // with real parts that are not between 0 and 1.
     List<double> candidates = roots.FindAll(
         root => root.Real > 0 && root.Real <= 1.0 && Math.Abs(root.Imaginary) < ROOT_EPS
     ).Select(
         root => root.Real
     ).ToList();

     // add t=0 and t=1 ... the edge cases.
     candidates.Add(0.0);
     candidates.Add(1.0);

     // find the candidate that yields the closest point on the bezier to the given point.
     double t = double.NaN;
     PointD output = new PointD(double.NaN,double.NaN);
     double minDistance = double.MaxValue;
     foreach (double candidate in candidates)
     {
         var ptAtCandidate = GetPoint(candidate);
         double distance = DistSqu(ptAtCandidate, pt);
         if (distance < minDistance)
         {
             minDistance = distance;
             t = candidate;
             output = ptAtCandidate;
         }
     }

     return new Tuple<PointD, double>(output, t);
 }

which reduces the problem to implementing GetNearestBezierPtQuintic() and a numeric root finding function for polynomials, given that quintic equations cannot be solved via a closed-form formula like the quadratic equation.

GetNearestBezierPtQuintic() –which returns the coefficients of [B(t) – P] ⋅ B’(t) when fully expanded given P and the control points of — turns out to be a little two much algebra to work out comfortably by hand, so I ran the open source symbolic mathematics application Sage on this Sage script yielding the following when translated into C#: (For the first time on the internet! … as far as I can tell)

static private List<Complex> GetNearestBezierPtQuintic(double x_0, double y_0, double x_1, double y_1,
            double x_2, double y_2, double x_3, double y_3, double x, double y)
{
    double t5 = 3 * x_0 * x_0 - 18 * x_0 * x_1 + 27 * x_1 * x_1 + 18 * x_0 * x_2 - 54 * x_1 * x_2 + 27 * x_2 * x_2 -
        6 * x_0 * x_3 + 18 * x_1 * x_3 - 18 * x_2 * x_3 + 3 * x_3 * x_3 + 3 * y_0 * y_0 - 18 * y_0 * y_1 +
        27 * y_1 * y_1 + 18 * y_0 * y_2 - 54 * y_1 * y_2 + 27 * y_2 * y_2 - 6 * y_0 * y_3 + 18 * y_1 * y_3 -
        18 * y_2 * y_3 + 3 * y_3 * y_3;
    double t4 = -15 * x_0 * x_0 + 75 * x_0 * x_1 - 90 * x_1 * x_1 - 60 * x_0 * x_2 + 135 * x_1 * x_2 -
        45 * x_2 * x_2 + 15 * x_0 * x_3 - 30 * x_1 * x_3 + 15 * x_2 * x_3 - 15 * y_0 * y_0 + 75 * y_0 * y_1 -
        90 * y_1 * y_1 - 60 * y_0 * y_2 + 135 * y_1 * y_2 - 45 * y_2 * y_2 + 15 * y_0 * y_3 - 30 * y_1 * y_3 +
        15 * y_2 * y_3;
    double t3 = 30 * x_0 * x_0 - 120 * x_0 * x_1 + 108 * x_1 * x_1 + 72 * x_0 * x_2 - 108 * x_1 * x_2 +
        18 * x_2 * x_2 - 12 * x_0 * x_3 + 12 * x_1 * x_3 + 30 * y_0 * y_0 - 120 * y_0 * y_1 +
        108 * y_1 * y_1 + 72 * y_0 * y_2 - 108 * y_1 * y_2 + 18 * y_2 * y_2 - 12 * y_0 * y_3 + 12 * y_1 * y_3;
    double t2 = 3 * x * x_0 - 30 * x_0 * x_0 - 9 * x * x_1 + 90 * x_0 * x_1 - 54 * x_1 * x_1 + 9 * x * x_2 -
        36 * x_0 * x_2 + 27 * x_1 * x_2 - 3 * x * x_3 + 3 * x_0 * x_3 + 3 * y * y_0 - 30 * y_0 * y_0 - 9 * y * y_1 +
        90 * y_0 * y_1 - 54 * y_1 * y_1 + 9 * y * y_2 - 36 * y_0 * y_2 + 27 * y_1 * y_2 - 3 * y * y_3 + 3 * y_0 * y_3;
    double t1 = -6 * x * x_0 + 15 * x_0 * x_0 + 12 * x * x_1 - 30 * x_0 * x_1 + 9 * x_1 * x_1 - 6 * x * x_2 +
        6 * x_0 * x_2 - 6 * y * y_0 + 15 * y_0 * y_0 + 12 * y * y_1 - 30 * y_0 * y_1 + 9 * y_1 * y_1 -
        6 * y * y_2 + 6 * y_0 * y_2;
    double t0 = 3 * x * x_0 - 3 * x_0 * x_0 - 3 * x * x_1 + 3 * x_0 * x_1 + 3 * y * y_0 - 3 * y_0 * y_0 -
        3 * y * y_1 + 3 * y_0 * y_1;

    return new List<Complex> { (Complex)t0/t5, (Complex)t1/t5, (Complex)t2/t5, (Complex)t3/t5, (Complex)t4/t5, (Complex)1.0 };
}

and decided to use Laguerre’s Method to solve the equation.

I chose Laguerre’s Method because it is optimized for polynomials, is less flaky than Newton-Raphson, is relatively concise, and is easy to port from C++ given .Net’s System.Numerics’s implementation of complex numbers. I ported the implementation of Laguerre’s Method found in Data Structures and Algorithms in C++ by Goodrich et. al. (here). This solver works well enough for my purposes; however, I think the optimal thing to do to get the optimal nearest-point-on-a-bezier algorithm would be to implement one of a class of newish algorithms that are specifically targeted at solving the quintic, e.g. “Solving the Quintic by Iteration” by Doyle and McMullen. No implementations of these algorithms seem to be publicly available, however, and it would be a research project that I don’t have time for right now to translate that paper from academese into code.

Untitled Escher Game Update

I’ve decided my “untitled Escher game“, i.e. Zoop on a double logarithmic spiral, is going to be named “Draak”, which is the Dutch word for dragon. The title bears no relation to the game beyond the fact that I am going to use as its logo art based on the following novel tesselation of the plane that I discovered while fooling around with the tesselation tool that I implemented to construct the sprites for this game, and also that I thought it would be cool to make the title art be an ambigram with rotational symmetry and I think I could figure out a way to do this with the word “draak”.

Notes on a novel tiling of the plane

Rendered in Escher draw

An Application for Creating Novel Escher-like Tessellations of the Plane

Over the past several weeks I have been investigating desktop applications for creating novel Escher-like tilings of the plane. Basically I’ve determined that none of what is publicly available is useful to me. The game I have in development will involve an animated Escher-like tessellation of a double logarithmic spiral — see here. The “logarithmic spiral” part of it means the publicly available applications can’t help me: they are too limited in what they will do and I can’t extend them because they are proprietary, so I have created my own tool.

These applications are “too limited” in the sense that none encompass everything possible that one would regard as a 2D tessellation. You have some applications that simplistically shoehorn you into a few kinds of geometries ignoring the richness of the whole domain of tiled patterns. You have other applications that try to take the domain seriously and follow the mathematical literature on the subject. What this means, generally, is that they allow the user to construct a tessellation in terms of its “wallpaper group” which is the mathematical classification of a plane pattern based on the symmetries the pattern admits.

The latter seems like what one would want but in practice it isn’t, at least it is not what I want. It is too heavy of a constraint to work only in terms of wallpaper group because there are all kinds of patterns one might be interested in that fall outside of this formalism: Escher’s tessellations of the Poincare disk model of the hyperbolic plane, for example, or, say, any kind of aperiodic tiling or any tessellations that admit similarity as a symmetry, i.e. scaling, such as Escher’s square limit etchings, or my case: various spiral patterns.

It is instructive that Escher himself did not work in terms of symmetry groups. He created his own classification system which Doris Schattschneider refers to as Escher’s “layman’s theory” of tilings in her book Visions of Symmetry (the authoritative text on Escher’s tessellations). Escher’s classification system comes from a pragmatic perspective rather than a formal mathematical perspective. He starts with basic cells — a square, a rectangle, an isosceles right triangle, etc. — and then enumerates the ways in which one can surround the cell with itself that result in tilings of the plane. There is a good overview of his system here.

What I like about Escher’s approach is that it is geared towards construction. When you try to make one of these things you start with a tile or some a small set of simple tiles that tile the plane. You try to modify them until you get something you like. I decided to implement software that captures that approach. I didn’t want to have to be too concerned with “wallpaper group” or other abstractions which I don’t personally find to be intuitive anyway.

What I came up with is the following application that is written in C#. Below is video in which I use the application to construct something like Escher’s butterfly tessellation — system IX-D in his layman’s theory — but on a double logarithmic spiral (This is going to be the basis for the art of the first level of my game; the butterflies will be animated, flapping their wings, etc.)

The way the application works is that there are two kinds of tiles: normal tiles and tile references. Normal tiles are composed of “sides”. There are two kinds of sides: normal sides and side references. Tile references and side references point to a another tile or side and say basically, “I am just like that tile or side, except apply this transformation to me”. The transformations that tile references can apply to a tile are defined in terms of affine transformation matrices. The transformations that side references can apply are just two kinds of flipping relative to the sides’ end points, either flipping “horizontally” or flipping “vertically” or both. The application then allows the user to add and move vertices on any sides that are on tiles that are marked as editable and then resolves all the references in real-time.

Right now, all of the information about tiles and sides and which is a reference to which has to be hand coded as an XML file, which is a pain (for the above I wrote a separate Python program that generated the XML defining a double logarithmic spiral of tiles that interact with each other according to Escher’s IX-D system), but it is an extremely flexible formulation (it could, for example, handle hyperbolic tessellations in theory … if you added a kind of side that is a circular arc and moebius transformations to the set of transformations the applications knows how to apply to referenced tiles).

Eventually I’d like to release this application  as open source but I am not sure it will be useful to anyone but me in its current form. I need to incorporate the part that one has to hand code in XML into the actual GUI … fix bugs and bezier curves and so forth, but please feel free to contact me if you are interested in the application in its current state or otherwise.

What I am working on…

I’m working on a puzzle game for iPads that takes the mechanics of a somewhat obscure game from the 1990s(*) and puts them on a double logarithmic spiral.

The final app will be styled similar to one of M. C. Escher’s tessellations of the plane with the tessellation changing at level breaks. I don’t have a name yet…

Gameplay will be like the following, which is video of a prototype I wrote in C# (just WinForms to the GDI, nothing fancy). I’m going to write the real thing in Swift using Sprite Kit, unless Swift turns out to be too immature in which case I’ll use C++ and Cocos2d-x again.

*: The identity of which I leave as an exercise for the reader.

Discretely Distributed Random Numbers in C#

Random numbers generated from a discrete distribution are a commonly needed thing in game development.

By “discrete distribution” we just mean the roll you get from something like an unfair die, e.g. you want a random number from 0 to 5 but you want 4 and 5 to be twice as likely as 0, 1, 2, or 3. If we think of each possible random value as having a weight, in this case 0, 1, 2, and 3 would have a weight of 1 and 4 and 5 would have a weight of 2.

A simple way to generate these kinds of random values is the following. Given some n such that we want random values ranging from 0 to n-1 where for each 0 ≤ i < n we have a weight w(i):

  1. Build a data structure mapping cumulative weight to each value i. By cumulative weight we mean for each i the sum of w(0), … , w(i-1).
  2. Generate a random number r from 0 to W-1 inclusive where W is the total weight i.e. the sum of w(i) for all i.
  3. If r is a cumulative weight in our data structure return the value associated with it; otherwise, find the value v that is the first item in the data structure that has a cumulative weight greater than r and return v-1.

Obviously the data structure in the above could just be an unordered array but a better way to do it is to use a binary search tree because 3. will then be O(log n) rather than linear. In Java you can do this with a TreeMap. In C++ you can do this with an std::map (or in C++ you can do the whole thing with boost::random::discrete_distribution).

However, in C# you can’t just use a SortedDictionary, which is a binary search tree under the hood. You can’t use a SortedDictionary because it does not expose the equivalent of C++’s std::lower_bound and std::upper_bound or the equivalient of Java’s TreeMap.floorEntry(…) and TreeMap.ceilingEntry(…). In order to perform the “otherwise” part of 3. above you need to efficiently be able to find the spot in the data structure where a key would go if it was in the data structure when it is in fact not in the data structure. There is no efficient way to do this with a SortedDictionary.

However, C#’s List does support a BinarySearch method that will return the bitwise complement of the index of the next element that is larger than the item you searched for so you can use that. The downside of the above is that there will be no way to efficiently add or remove items to the discrete distribution, but often you don’t need this functionality anyway and the code to do the whole algorithm is very concise:

class DiscreteDistributionRnd
    {
        private List<int> m_accumulatedWeights;
        private int m_totalWeight;
        private Random m_rnd;

        public DiscreteDistributionRnd(IEnumerable<int> weights, Random rnd = null)
        {
            int accumulator = 0;
            m_accumulatedWeights = weights.Select(
                (int prob) => {
                    int output = accumulator;
                    accumulator += prob;
                    return output;
                }
            ).ToList();

            m_totalWeight = accumulator;
            m_rnd = (rnd != null) ? rnd : new Random();
        }

        public DiscreteDistributionRnd(Random rnd, params int[] weights) : 
            this(weights, rnd) { }

        public DiscreteDistributionRnd(params int[] weights) : 
            this(weights, null) { }

        public int Next()
        {
            int index = m_accumulatedWeights.BinarySearch(m_rnd.Next(m_totalWeight));
            return (index >= 0) ? index : ~index - 1;
        }
    }

where usage would be like the following:

            DiscreteDistributionRnd rnd = new DiscreteDistributionRnd(3,1,2,6);
            int[] ary = new int[4] {0,0,0,0};
            for (int i = 0; i < 100000; i++)
                ary[rnd.Next()]++;
            System.Diagnostics.Debug.WriteLine(
                "0 => {0}, 1 => {1}, 2 => {2}, 3 => {3}",
                (float)(ary[0] / 100000.0),
                (float)(ary[1] / 100000.0),
                (float)(ary[2] / 100000.0),
                (float)(ary[3] / 100000.0)
            );